† Corresponding author. E-mail:
CdTe is one of the leading materials for low cost, high efficiency thin-film solar cells with a nearly ideal band gap of 1.48 eV. However, its solar to electricity power conversion efficiency (PCE) is hindered by the relatively low open circuit voltage (VOC) due to intrinsic defect related issues. Here, we propose that alloying CdTe with CdSe could possibly improve the solar cell performance by reducing the “ideal” band gap of CdTe to gain more short-circuit current from long-wavelength absorption without sacrificing much VOC. Using the hybrid functional calculation, we find that the minimum band gap of the CdTe1−xSex alloy can be reduced from 1.48 eV at x = 0 to 1.39 eV at
CdTe is one of the leading material for low-cost, high-efficient, thin film solar cells due to its good optoelectronic property and the easy way to fabricate.[1] Although the power conversion efficiency (PCE) of the CdTe-based solar cell has so far reached to an impressive 22.1%, it is still much below the Shockley–Queisser limit (32%).[2] The current PCE in the world-record solar cell is mainly limited by the small open-circuit voltage (VOC), which is about 0.85 V compared to its band gap of 1.48 V at room temperature, as well as the relatively low short-circuit current (JSC), which reaches about 28 mA/cm2 compared to JSC = 30 mA/cm2 under the Shockley–Queisser limit.[1,3] Currently, most efforts to improve CdTe-based solar cell efficiency have been trying to improve VOC instead of the JSC because of the large deficiency in VOC. Some success has been achieved in increasing VOC by group V doping in CdTe.[4] However, it is still not clear whether such approach can obtain stable p-type absorbers because non-equilibrium doping process has to be used to improve the p-type doping.[5] On the other hand, one may increase the PCE by increasing JSC, which can be easily achieved by reducing the band gap of CdTe to harvest more long-wavelength sunlight. For example, if the band gap is reduced from 1.48 eV to 1.35 eV, the ideal JSC is increased from 30 mA/cm2 to ∼36 mA/cm2. Because VOC of the current champion CdTe solar cell is still much lower than the band gap,[6,7] mainly due to the low carrier density in p-type CdTe, reducing the band gap of CdTe slightly, especially lowering the conduction band energy, is not expected to cause much decrease of the VOC.
Band gap tuning through alloying is widely used in semiconductors. Alloying CdTe at cation site could hardly achieve the reduction of the band gap, because the band gap always becomes wider when Cd is substituted by isovalent Zn,[8,9] and it is not desired to try alloying HgTe with CdTe given the toxicity of Hg. Therefore, one can only try to reduce the band gap of CdTe through alloying CdTe at anion site. The band gap of CdS and CdSe is 2.52 eV and 1.74 eV, respectively.[10] Although the band gap of CdS and CdSe are both larger than that of CdTe, alloying CdS or CdSe into CdTe can effectively reduce its band gap due to the large bowing effect.[11] Because the lattice mismatch between CdS and CdTe is large, the solubility of S into CdTe is low, which has been confirmed by previous theoretical and experimental studies.[11–13] Therefore, alloying CdTe with CdSe forming CdTe1−xSex seems to be the best choice to reduce the band gap effectively. Some of the recent experimental studies has already shown that diffusing CdSe into CdTe layer enables the increase of the JSC[2,14–16] However, so far, it is not clear how low the band gap of CdTe1−xSex could be to maximize the increase of the JSC, although different experimental results regarding the CdTe1−xSex alloys have been reported.[17–21]
Furthermore, high p-type doping in CdTe is usually required for its solar cell performance, because as a minority carrier device, its electron mobility is much higher than the hole mobility. Although the dominant intrinsic p-type defect in CdTe is VCd, the obtained hole carrier density is too low for a good solar cell because VCd has high formation energy. Therefore, extrinsic p-type dopants, such as CuCd, is often used in commercial CdTe-based solar cells.[22–24] However, it is also not clear how the formation of CdTe1−xSex alloy affects the doping properties in CdTe.
In this work, using the first principle hybrid-functional calculations, we find that the minimum of the band gap of the CdSexTe1−x alloy can approach 1.39 eV at about
The first principle calculation in this work is performed by the VASP code.[25,26] PAW psuedopotentials with an energy cutoff of 350 eV were employed. PBEsol functional[27] with generalized gradient approximation (GGA) exchange correlation is used for the structure optimization of the bulk constitutes and alloys. All the atoms and the lattice vectors were fully relaxed until the force on each atom is less than 0.01 eV/Å. For the defect calculation, the lattice vectors of the optimized alloy are fixed with all the atoms inside the supercell relaxed. To calculate the band structures and the band offsets, we have employed the hybrid functional[28] consists of 32% exact Hartree–Fock exchange mixed with 68% PBE exchange with spin–orbit coupling (SOC) to determine the band gap. This specific functional is chosen so that the calculated band gap of both zinc blende CdTe and CdSe are close to experimental values. Using the proposed functional, the calculated band gaps of zinc blende CdTe and CdSe are 1.52 eV and 1.69 eV, respectively, compared to the experiment values of 1.48 eV and 1.74 eV at room temperature.[10] The calculation of the band offsets of the series of CdSexTe1−x alloys follows the method described in our previous study.[11]
The CdSexTe1−x alloy is assumed to be random and is mimicked by the special quasirandom structures (SQS)[29] in the cubic supercell of 512 or 64 atoms, when x = 0, 0.25, 0.5, 0.75, and 1. The cubic supercell of 512 and 64 atoms are optimized with equivalent k-point sampling of 1×1×1 and 2×2×2, respectively. The averaged atomic correlation functions of the first neighbor pairs, triangles and tetrahedral of the SQS are the same as the perfect random alloys in the 512-atom supercells for all the mentioned concentrations. For the 64-atom supercell, the averaged atomic correlation functions of the first neighbored tetrahedral deviates from the perfect random alloys by 0.06 for x = 0.25 and x = 0.75 but is accurate enough for this case. The way to calculate the defect formation energy and the transition energy level is the same as stated in the previous work.[30–32] After testing with different functionals and supercells, the calculated formation energies are similar, and the calculated transition energy levels are converged to within 0.03 eV. Therefore, PBEsol functional and 64-atom supercells are adopted for the calculation of the doped alloys to reduce the computational cost.
As described above, we have calculated the respective volume and mixing enthalpy
The band gaps of the random CdSexTe1−x alloy are conventionally fitted to the equation:
The bowing of the band gaps for CdSexTe1−x alloys is caused by the bowing of both the band edges. As shown in Fig.
We first investigate the formation of the impurity CuCd in CdSe0.375Te0.625 alloy modeled by a 64-atom SQS containing all five type Se4−nTen (n = 0–4) nearest neighbor motifs around each Cd atom. The formation energy of CuCd under Cd-rich condition at each possible site are calculated and plotted in Fig.
In alloys, the defect formation energy
Considering the limit condition for the effective formation energy, equations (
On the other hand, at low temperature limit (
The calculated effective formation energies for the defect CuCd at neutral and −1 states in CdSexTe1−x alloys (x = 0, 0.25, 0.375, 0.5, 0.75, and 1) at the low temperature limit, the high temperature limit and a finite temperature T = 600 K are shown in Figs.
As expected, the effective transition energy level increases as Se concentration increases in the alloy. It is interesting to see in Fig.
The formation energy of the
In summary, using first-principles calculations, we show that alloying CdTe with CdSe to form CdSexTe1−x alloys could be an effective approach to increase the PCE of the CdTe based thin film solar cells. The CdSexTe1−x alloy has two merits compared to CdTe: (i) reduced band gap (estimated to be 1.39 eV at x = 0.32) to improve long-wavelength light harvest, thus improving JSC, (ii) lower formation energy of the shallow defect CuCd to improve the p-type conductivity, thus the potential to improve the Voc.
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 | |
14 | |
15 | |
16 | |
17 | |
18 | |
19 | |
20 | |
21 | |
22 | |
23 | |
24 | |
25 | |
26 | |
27 | |
28 | |
29 | |
30 | |
31 | |
32 | |
33 | |
34 | |
35 | |
36 |